Part Number Hot Search : 
80CLQ150 01061 81PFF W51F20 SMA5935B 6308G 30090 MZ4103
Product Description
Full Text Search
 

To Download RF83 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? ? ??????????????????????????????????????????????????????????????? ??????????????????????????????????????????????????????????????? ????????????? RF83 ? 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? ? contents 1. general description ........................................................................................................ ........1 2. features ................................................................................................................... .................1 3. applications ............................................................................................................... ..............1 4. typical application ........................................................................................................ .........2 5. ordering information ....................................................................................................... ......3 6. pin configuration........................................................................................................... .........3 7. 8-pin options .............................................................................................................. .............4 8. pin description ............................................................................................................ ............4 9. absolute maximum ratings (note 1) ....................................................................................5 10. operating ratings (note 2) ............................................................................................... .....5 11. electrical characteristics .............................................................................................. .........6 12. functional diagram ....................................................................................................... .........8 13. applications information and functional description ........................................................8 13.1. design steps .......................................................................................................... 8 13.1.1. step 1: selecting the operating mode.................................................................. 9 13.1.2. step 2: selecting the reference oscillator ........................................................... 9 13.1.3. step 3: selecting the c th capacitor ..................................................................... 11 13.1.4. step 4: selecting the c agc capacitor ................................................................... 12 13.1.5. step 5: selecting the demod filter bandwidth ........................................ ........ ..13 14. additional applications information ..................................................................................... 14 14.1. antenna impedance matching ................................................................................ 14 14.2. shutdown function ............................................................................................ ..... 16 14.3. power supply bypass capacitors............................................................................ 16 14.4. increasing selectivity with an optional bandpass filter ........................................ 16 14.5. data squelching .............................................................................................. ........ 16 14.6. wake-up function ............................................................................................. ..... 16 15. package information....................................................................................................... .........18 www.datasheet.net/ datasheet pdf - http://www..co.kr/
-1- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 1. general description the RF83 is a single chip ask/ook (on-off keyed) rf receiver ic. this device is a true ?antenna-in to data-out? monolithic device. all rf and if tuning are accomplished automatically within the ic which eliminates manual tuning and reduces production costs. the result is a highly reliable yet low cost solution. the RF83 is a fully featured part in 16-pin packaging and a same part packaged in 8-pin packaging with a reduced feature set. the RF83 provides two additional functions, (1) a shutdown pin, which may be used to turn the device off for duty-cycled operation, and (2) a ?wake-up? output, whic h provides an output flag indicating when an rf signal is present. these features make the RF83 ideal for low and ultra-low power applications, such as rke and remote controls. all if filtering and post-detection (demodulator) data filtering is provided within the RF83, so no external filters are necessary. one of four demodulator filter bandwidths may be selected externally by the user. the RF83 offer two modes of operation; fixed-mode (fix) and sweep-mode (swp). in fixed mode the RF83 functions as a conventional super-heterodyne receiver. in sweep mode the RF83 sweeps a wider rf spectrum. fixed-mode provides better selectivity and sensitivity performance and sweep mode enables the RF83 to be used with low cost, imprecise transmitters. 2. features ? 300mhz to 440mhz frequency range ? high receiver sensitivity: -110dbm (315mhz), -110dbm (433mhz) ? data-rate up to 10kbps (fixed-mode) ? low power consumption ? 3ma fully operational (315mhz) ? 0.9a in shutdown ? 300a in polled operation (10:1 duty-cycle) ? wake-up output flag to enable decoders and microprocessors ? very low rf re-radiation at the antenna ? highly integrated with extrem ely low external part count 3. applications ? automotive remote keyless entry (rke) ? remote controls ? remote fan and light control ? garage door and gate openers www.datasheet.net/ datasheet pdf - http://www..co.kr/
-2- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 4. typical application 315mhz 800bps on-off keyed receiver 433.92mhz 800bps on-off keyed receiver www.datasheet.net/ datasheet pdf - http://www..co.kr/
-3- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 5. ordering information part number demodulator bandwidth operating mode shut down wa k e b output flag package RF83 user programmable fixed or sweep ye s ye s 16-pin sop RF83a 5000hz sweep no ye s 8-pin sop RF83b 1250hz fixed ye s no 8-pin sop RF83c 2500hz fixed ye s no 8-pin sop RF83d 5000hz fixed ye s no 8-pin sop 6. pin configuration sel0 swen vssrf refosc vssrf sel1 vssrf refosc ant cagc ant cagc vddrf wa k e b vddrf shut/wakeb vddbb shut cth do cth do nc vssbb standard 16-pin or 8-pin sop (m) packages www.datasheet.net/ datasheet pdf - http://www..co.kr/
-4- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 7. 8-pin options the standard 16-pin package allows complete control of all configurable features. some reduced function 8-pin versions are also available. for high-volume applications additional customized 8-pin devices can be produced. swen, sel0 and sel1 pins are internally bonded to reduce the pin count. pin 6 may be configured as either shut or wakeb. sel0 sel1 demodulator bandwidth sweep mode fixed mode 1 1 5000 hz 10000hz 0 1 2500 hz 5000hz 1 0 1250 hz 2500 hz 0 0 625 hz 1250 hz table 1. nominal demodulato r filter bandwidth vs. sel0, sel1 and operating mode 8. pin description pin number 16-pin pkg. pin number 8-pin pkg. pin name pin function 1 sel0 bandwidth selection bit 0 (digital input): used in conjunction with sel1 to set the desired demodulator filter bandwidth. see table 1. internally pulled-up to vddrf 2, 3 1 vssrf rf power supply: ground return to the rf section power supply. 4 2 ant antenna (analog input): for optimal performance the ant pin should be impedance matched to the antenna. see ?applications information? for information on input impedance and matching techniques 5 3 vddrf rf power supply: positive supply input for the rf section of the ic 6 vddbb base-band power supply: positive supply input for the baseband section (digital section) of the ic 7 4 cth data slicing threshold capacitor (analog i/o): capacitor connected to this pin extracts the dc average value from the demodulated waveform which becomes the reference for the internal data slicing comparator 8 nc not internally connected 9 vssbb base-band power supply: ground return to the baseband section power supply www.datasheet.net/ datasheet pdf - http://www..co.kr/
-5- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 10 5 do data output (digital output) 11 6 shut shutdown (digital input): shutdown-mode logic-level control input. pull low to enable the receiver. internally pulled-up to vddrf 12 wakeb wakeup (digital output): active-low output that indicates detection of an incoming rf signal 13 7 cagc automatic gain control (analog i/o): connect an external capacitor to set the attack/decay rate of the on-chip automatic gain control 14 sel1 bandwidth selection bit 1 (digital input): used in conjunction with sel0 to set the desired demodulator filter bandwidth. see table 1. internally pulled-up to vddrf 15 8 refosc reference oscillator: timing refe rence, sets the rf receive frequency. 16 swen sweep-mode enable (digital input): sweep- or fixed-mode operation control input. swen high = sweep mode; swen low = conventional superheterodyne receiver. internally pulled-up to vddrf 9. absolute maximum ratings (note 1) supply voltage (v ddrf , v ddbb ) +7v input/output voltage (v i/o ) v ss ?0.3 to v dd +0.3 junction temperature (t j ) +150c storage temperature range (t s ) ?65c to +150c lead temperature (soldering, 10 sec.) +260c esd rating note 3 10. operating ratings (note 2) rf frequency range 300mhz to 440mhz supply voltage ( vddrf, vddbb, 300~370mhz ) +3.6v to +5.5v supply voltage ( vddrf, vddbb, 370~440mhz ) +3.6v to +5.5v data duty-cycle 20% to 80% reference oscillator input range 0.1v pp to 1.5v pp ambient temperature (t a ) ?35c to +85c www.datasheet.net/ datasheet pdf - http://www..co.kr/
-6- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 11. electrical characteristics v ddrf = v ddbb = v dd where +4.75v v dd 5.5v, v ss = 0v; c agc = 4.7f, c th = 100nf; sel0 = sel1 = v ss ; fixed mode (swen = v ss ); f refosc = 4.8970mhz (equivalent to f rf = 315mhz); data-rate = 1kbps (manchester encoded). t a = 25c, bold values indicate ?40c t a +85c; current flow into device pins is positive; unless noted. symbol parameter condition min typ max units continuous operation, f rf = 315mhz 3 3.5 ma i op operating current polled with 10:1 duty cycle, f rf = 315mhz 300 a continuous operation, f rf = 433.92mhz 5 6 ma polled with 10:1 duty cycle, f rf = 433.92mhz 500 a i stby standby current v shut = v dd 0.9 a rf section, if section receiver sensitivity (note 4) f rf = 315mhz ?110 dbm f rf = 433.92mhz ?110 dbm f if if center frequency note 6 0.86 mhz f bw if bandwidth note 6 0.43 mhz maximum receiver input r sc = 50 ? ?20 dbm spurious reverse isolation ant pin, r sc = 50 ? , note 5 30 vrms agc attack to decay ratio t at ta c k t decay 0.1 agc leakage current t a = +85c 100 na reference oscillator z refosc reference oscillator input impedance note 8 290 k ? reference oscillator source current 5.2 ua demodulator z cth cth source impedance note 7 145 k ? i zcth(leak) cth leakage current t a = +85c 100 na demodulator filter bandwidth sweep mode (swen = v dd or open) note 6 v sel0 = v dd . vsel1 = v dd v sel0 = v ss . v sel1 = v dd v sel0 = v dd. v sel1 = v ss v sel0 = v ss . v sel1 = v ss 4000 2000 1000 500 hz hz hz hz www.datasheet.net/ datasheet pdf - http://www..co.kr/
-7- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? demodulator filter bandwidth fixed mode (swen = vss ) note 6 v sel0 = v dd . v sel1 = v dd v sel0 = v ss . v sel1 = v dd v sel0 = v dd . v sel1 = v ss v sel0 = v ss . v sel1 = v ss 8000 4000 2000 1000 hz hz hz hz digital/control section v in(high) input-high voltage sel0, sel1, swen 0.8 v dd v in(low) input-low voltage sel0, sel1, swen 0.2 v dd i out output current do, wakeb pins, push-pull 10 a v out(high) output high voltage do, wakeb pins, i out = ?1a 0.9 v dd v out(low) output low voltage do, wakeb pins, i out = +1a 0.1 v dd t r , t f output rise and fall times do, wakeb pins, c load = 15pf 10 s note 1: exceeding the absolute maximum rating may damage the device. note 2: the device is not guaranteed to function outside its operating rating. note 3: devices are esd sensitive, use appropriate esd precautions. meets class 1 esd test requirements, (human body model hbm), in accordance with mil-std-883c, method 3015. do not operate or store near strong electrostatic fields. note 4: sensitivity is defined as the average signal level measured at the input necessary to achieve 10 -2 ber (bit error rate). the rf input is assumed to be matched to 50 ? . note 5: spurious reverse isolation represents the s purious components which appear on the rf input pin (ant) measured into 50 ? with an input rf matching network. note 6: parameter scales linearly with reference oscillat or frequency f t . for any reference oscillator frequency other than 4.8970mhz, compute new parameter value as the ratio: f refosc mhz 4.8970mhz (parameter value at 4.8970mhz) note 7: parameter scales inversely with reference oscillator frequency f t . for any reference oscillator frequency other than 4.8970mhz, compute new parameter value as the ratio: 4.8970mhz f refosc mhz (parameter value at 4.8970mhz) note 8: series resistance of the resonator (ceramic resonator or crystal) should be minimized to the extent possible. in cases where the resonator series resistance is too great, the oscillator may oscillate at a diminished peak-to-peak level, or may fail to oscillate entirely. hoperf recommends that series resistances fo r ceramic resonators and crystals not exceed 50ohms and 100ohms respectively. refer to application hint 35 for crystal recommendations. www.datasheet.net/ datasheet pdf - http://www..co.kr/
-8- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 12. functional diagram figure 1. RF83 block diagram 13. applications information and functional description refer to figure 1 ?RF83 block diagram?. identified in the block diagram are the four sections of the ic: uhf downconverter, ook demodulator, reference and control, and wakeup. also shown in the figure are two capacitors (cth, cagc) and one timing component, usually a crystal or ceramic resonator. with the exception of a supply decoupling capacitor, and antenna impedance matching network, these are the only external components needed by the RF83 to assemble a complete uhf receiver. for optimal performance is highly recommended that the RF83 is impedance matched to the antenna, the matching network will add an additional two or three components. four control inputs are shown in the block diagram: sel0, sel1, swen, and shut. using these logic inputs, the user can control the operating mode and selectable features of the ic. these inputs are cmos compatible, and are internally pu lled-up. if bandpass filter roll-off response of the if filter is 5th order, while the demodulator data filter exhibits a 2nd order response. 13.1. design steps the following steps are the basic design steps for using the RF83 receiver: 1) select the operating mode (sweep or fixed) 2) select the reference oscillator 3) select the cth capacitor 4) select the cagc capacitor 5) select the demodulator filter bandwidth www.datasheet.net/ datasheet pdf - http://www..co.kr/
-9- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 13.1.1. step 1: selecting the operating mode 13.1.1.1. fixed-mode operation for applications where the transmit frequency is accurately set (that is, applications where a saw or crystal- based transmitter is used) the RF83 may be configured as a standard superheterodyne receiver (fixed mode). in fixed-mode operation the rf bandwidth is narrower making the receiver less susceptible to interfering signals. fixed mode is selected by connecting swen to ground. 13.1.1.2. sweep-mode operation when used in conjunction with low-cost l-c transmitters the RF83 should be configured in sweep-mode. in sweep-mode, while the topology is still superheterodyne, the lo (local oscillator) is swept over a range of frequencies at rates greater than the data rate. this technique effectively increases the rf bandwidth of the RF83, allowing the device to operate in applications where significant transmitter-receiver frequency misalignment may exist. the transmit frequency may vary up to 0.5% over initial tolerance, aging, and temperature. in sweep-mode a band approximately 1.5% around the nominal transmit frequency is captured. the transmitter may drift up to 0.5% without the need to retune the receiver and without impacting system performance. the swept-lo technique does not affect the if bandwidth, therefore noise performance is not degraded relative to fixed mode. the if bandwidth is 430khz whether the device is operating in fixed or sweep-mode. due to limitations imposed by the lo sweeping process, the upper limit on data rate in sweep mode is approximately 5.0kbps. similar performance is not currently available with crystal-based superheterodyne receivers which can operate only with saw- or crystal-based transmitters. in sweep-mode, a range reduction will occur in installa tions where there is a str ong interferer in the swept rf band. this is because the process indiscriminately includes all signals within the sweep range. an RF83 may be used in place of a superregenerative receiver in most applications. 13.1.2. step 2: selectin g the reference oscillator all timing and tuning operations on the RF83 are derived from the internal colpitts reference oscillator. timing and tuning is controlled through the refosc pin in one of three ways: 1) connect a ceramic resonator 2) connect a crystal 3) drive this pin with an external timing signal the specific reference frequency required is related to the system transmit frequency and to the operating mode of the receiver as set by the swen pin. www.datasheet.net/ datasheet pdf - http://www..co.kr/
-10- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 13.1.1.3. crystal or cerami c resonator selection do not use resonators with integral capacitors since capacitors are included in the ic, also care should be taken to ensure low esr capacitors are selected. application hint 34 and application hint 35 provide additional information and recommended sources for crystals and resonators. if operating in fixed-mode, a crystal is recommended. in sweep-mode either a crystal or ceramic resonator may be used. when a crystal of ceramic resonator is used the minimum voltage is 300mv pp . if using an externally applied signal it should be ac-coupled and limited to the operating range of 0.1v pp to 1.5v pp . 13.1.1.4. selecting reference oscillator frequency f t (fixed mode) as with any superheterodyne receiver, the mixing between the internal lo (local oscillator) frequency f lo and the incoming transmit frequency f tx ideally must equal the if center frequency. equation 1 may be used to compute the appropriate f lo for a given f tx : (1) f lo =f tx (0.86 f tx ) 315 frequencies f tx and f lo are in mhz. note that two values of f lo exist for any given f tx, distinguished as ?high-side mixing? and ?low-side mixing.? high-side mixing results in an image frequency above the frequency of interest and lo w-side mixing results in a frequency below. after choosing one of the two acceptable values of f lo , use equation 2 to compute the reference oscillator frequency f t : (2) f t = f lo 64.5 frequency f t is in mhz. connect a crystal of frequency f t to refosc on the RF83. four-decimal-place accuracy on the frequency is generally adequate. the following table identifies f t for some common transmit frequencies when the RF83 is operated in fixed mode. transmit frequency (f tx ) reference oscillator frequency (f t ) 315mhz 4.8970 mhz 390 mhz 6.0630 mhz 418 mhz 6.4983 mhz 433.92 mhz 6.7458 mhz table 2. fixed mode recommended reference oscillator values for typical transmit frequencies (high-side mixing) 13.1.1.5. selecting refosc frequency f t (sweep mode) selection of the reference oscillator frequency ft in sweep mode is much simpler than in fixed mode due to the lo sweeping process. also, accuracy requirements of the frequency reference component are significantly relaxed. in sweep mode, f t is given by equation 3: (3) f t = f lo 64.25 www.datasheet.net/ datasheet pdf - http://www..co.kr/
-11- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? in sweep mode a reference oscillat or with frequency accurate to two-decimal-places is generally adequate. a crystal may be used and may be necessa ry in some cases if the transmit frequency is particularly imprecise. transmit frequency (f tx ) reference oscillator frequency (f t ) 315mhz 4.88 mhz 390 mhz 6.05 mhz 418 mhz 6.48 mhz 433.92 mhz 6.73 mhz table 3. recommended reference oscillator values for typical transmit frequencies (sweep-mode) 13.1.3. step 3: selecting the c th capacitor extraction of the dc value of the demodulated signal for purposes of logic-level data slicing is accomplished using the external threshold capacitor cth and the on-chip switched-capacitor ?resistor? rsc, shown in the block diagram. slicing level time constant values vary somewhat with decoder type, data pattern, and data rate, but typically values range from 5ms to 50ms. optimization of the value of cth is required to maximize range. 13.1.1.6. selecting capacitor c th the first step in the process is selection of a data-slicing-level time constant. this selection is strongly dependent on system issues including system decode response time and data code structure (that is, existence of data preamble, etc.). this issue is covered in more detail in application note 22. the effective resistance of r sc is listed in the electrical characteristics table as 145k ? at 315mhz, this value scales linearly with frequency. source impedance of the cth pin at other frequencies is given by equation (4), where f t is in mhz: (4) r sc =145k ? 4.8970 f t of 5x the bit-rate is recommended. assuming that a slicing level time constant has been established, capacitor cth may be computed using equation (5) c th = r sc a standard 20% x7r ceramic capacitor is genera lly sufficient. refer to application hint 42 for c th and c agc selection examples. www.datasheet.net/ datasheet pdf - http://www..co.kr/
-12- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 13.1.4. step 4: selecting the c agc capacitor the signal path has agc (automatic gain control) to increase input dynamic range. the attack time constant of the agc is set externally by the value of the c agc capacitor connected to the cagc pin of the device. to maximize system range, it is important to keep the agc control voltage ripple low, preferably under 10mvpp once the control voltage has attained its quiescent value. for this reason capacitor values of at least 0.47f are recommended. the agc control voltage is carefully managed on-chip to allow duty-cycle operation of the RF83. when the device is placed into shutdown mode (shut pin pulled high), the agc capacitor floats to retain the voltage. when operation is resumed, only the voltage droop due to capacitor leakage must be replenished. a relatively low-leakage capacitor is recommended when the devices are used in duty-cycled operation. to further enhance duty-cycled operation, the agc pu sh and pull currents are boosted for approximately 10ms immediately after the device is taken out of shutdown. this compensates for agc capacitor voltage droop and reduces the time to restore the correct agc voltage. the current is boosted by a factor of 45. 13.1.1.7. selecting c agc capacitor in continuous mode a c agc capacitor in the range of 0.47f to 4.7f is typically recommended. the value of the c agc should be selected to minimize the ripple on the agc control voltage by using a sufficiently large capacitor. however if the capacitor is too large the agc may react too slowly to incoming signals. agc settling time from a completely discharged (zero-volt) state is given approximately by equation 6: (6) ? t = 1.333c agc ? 0.44 where: c agc is in f, and ? t is in seconds. 13.1.1.8. selecting c agc capacitor in duty-cycle mode voltage droop across the c agc capacitor during shutdown should be replenished as quickly as possible after the ic is enabled. as mentioned above, the RF83 boosts the push-pull current by a factor of 45 immediately after start-up. this fixed time period is based on the reference oscillator frequency f t . the time is 10.9ms for f t = 6.00mhz, and varies inversely with f t . the value of c agc capacitor and the duration of the shutdown time period should be selected such that the droop can be replenished within this 10ms period. polarity of the droop is unknown, meaning the agc voltage could droop up or down. worst-case from a recovery standpoint is downward droop, since the agc pull-up current is 1/10th magnitude of the pulldown current. the downward droop is replenished according to the equation 7: (7) where: i ? v = c agc ? t i = agc pullup current for the initial 10ms (67.5a) www.datasheet.net/ datasheet pdf - http://www..co.kr/
-13- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? c agc = agc capacitor value ? t = droop recovery time ? v = droop voltage for example, if user desires ? t = 10ms and chooses a 4.7f c agc , then the allowable droop is about 144mv. using the same equation with 200na worst case pin leakage and assuming 1a of capacitor leakage in the same direction, the maximum allowable ? t (shutdown time) is about 0.56s for droop recovery in 10ms. the ratio of decay-to-attack time-constant is fixed at 10:1 (that is, the attack time constant is 1/10th of the decay time constant). generally the design value of 10:1 is adequate for the vast majority of applications. if adjustment is required the constant may be varied by adding a resistor in parallel with the c agc capacitor. the value of the resistor must be determined on a case by case basis. 13.1.5. step 5: selecting the demod filter bandwidth the inputs sel0 and sel1 control the demodulator filter bandwidth in four binary steps (625hz to 5000hz in sweep, 1250hz to 10000hz in fixed mode), see table 1. bandwidth must be selected according to the application. the demodulator bandwidth should be set according to equation 8. (8) demodulator bandwidth = 0.65 / shortest pulse-width it should be noted that the values indicated in table 1 are nominal values. the filter bandwidth scales linearly with frequency so the exact value will depend on the operating frequency. refer to the ?electrical characteristics? for the exact filter bandwidth at a chosen frequency. sel0 sel1 demodulator bandwidth sweep mode fixed mode 1 1 5000hz 10000 hz 0 1 2500 hz 5000 hz 1 0 1250 hz 2500 hz 0 0 625 hz 1250 hz table 1. nominal demodulator filter bandw idth vs. sel0, sel1 and operating mode www.datasheet.net/ datasheet pdf - http://www..co.kr/
-14- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 14. additional applications information in addition to the basic operation of the RF83 the following enhancements can be made. in particular it is strongly recommended that the antenna impedance is matched to the input of the ic . 14.1. antenna impedance matching as shown in table 4 the antenna pin input impedance is frequency dependant. the ant pin can be matched to 50 ohms with an l- type circuit. that is, a shunt inductor from the rf input to ground and another in series from the rf input to the antenna pin. inductor values may be different from table depending on pcb material, pcb thickness, ground configuration, and how long the traces are in the layout. values shown were characterized for a 0.031 thickness, fr4 board, solid ground plane on bottom layer, and very short traces. murata and coilcraft wire wound 0603 or 0805 surface mount inductors were test ed, however any wire wound inductor with high srf (self resonance frequency) should do the job. frequency (mhz) z in ( ) z 11 s 11 l shunt (nh) l series (nh) 300 12-j166 0.803-j0.529 15 72 305 12-j165 0.800-j0.530 15 72 310 12-j163 0.796-j0.536 15 72 315 13-j162 0.791-j0.536 15 72 320 12-j160 0.789-j0.543 15 68 325 12-j157 0.782-j0.550 12 68 330 12-j155 0.778-j0.556 12 68 335 12-j152 0.770-j0.564 12 68 340 11?j150 0.767-j0.572 15 56 345 11-j148 0.762-j0.578 15 56 350 11-j145 0.753-j0.586 12 56 355 11-j143 0.748-j0.592 12 56 360 11-j141 0.742-j0.597 10 56 365 11-j139 0.735-j0.603 10 56 370 10-j137 0.732-j0.612 12 47 375 10-j135 0.725-j0.619 12 47 380 10-j133 0.718-j0.625 10 47 385 10-j131 0.711-j0.631 10 47 390 10-j130 0.707-j0.634 10 43 395 10-j128 0.700-j0.641 10 43 400 10-j126 0.692-j0.647 10 43 405 10-j124 0.684-j0.653 10 39 410 10-j122 0.675-j0.660 10 39 www.datasheet.net/ datasheet pdf - http://www..co.kr/
-15- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 415 10-j120 0.667-j0.667 10 39 420 10-j118 0.658-j0.673 10 36 425 10-j117 0.653-j0.677 10 36 430 10-j115 0.643-j0.684 10 33 435 10-j114 0.638-j0.687 10 33 440 8-j112 0.635-j0.704 8.2 33 table 4. input impedance versus frequency www.datasheet.net/ datasheet pdf - http://www..co.kr/
-16- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 14.2. shutdown function duty-cycled operation of the RF83 (often referred to as polling) is achieved by turning the RF83 on and off via the shut pin. the shutdown function is controlled by a logic state applied to the shut pin. when vshut is high, the device goes into low-power standby mode. this pin is pulled high internally; it must be externally pulled low to enable the receiver. 14.3. power supply bypass capacitors vddbb and vddrf should be connected together directly at the ic pins. supply bypass capacitors are strongly recommended. they should be connecte d to vddbb and vddrf and should have the shortest possible lead lengths. for best performance, connect vssrf to vssbb at the power supply only (that is, keep v ssbb currents from flowing through the v ssrf return path). 14.4. increasing selectivity with an optional bandpass filter for applications located in high ambient noise environments, a fixed value band-pass network may be connected between the ant pin and vssrf to provide additional receive selectivity and input overload protection. a minimum input configuration is included in figure 2a. it provides some filtering and necessary overload protection. 14.5. data squelching during quiet periods (no signal) the data output (do pin) transitions randomly with noise. most decoders can discriminate between this random noise and actual data but for some system it does present a problem. there are three possible approaches to reducing this output noise: 1) analog squelch to raise the demodulator threshold 2) digital squelch to disable the output when data is not present 3) output filter to filter the (high frequency) noise glitches on the data output pin. the simplest solution is add analog squelch by introducing a small offset, or squelch voltage, on the cth pin so that noise does not trigger the internal comparator. usually 20mv to 30mv is sufficient, and may be achieved by connecting a several-megohm resistor from the cth pin to either v ss or v dd , depending on the desired offset polarity. since the RF83 has receiver agc noise at the internal comparator input is always the same, set by the agc. the squelch offset requirement does not change as the local noise strength changes from installation to installation. introducing squelch will reduce sensitivity and also reduce range. only introduce an amount of offset sufficient to quiet the output. typical squelch resistor values range from 6.8m ? to 10m ? . 14.6. wake-up function the wakeb output signal can be used to reduce system power consumption by enabling the rest of a system when an rf signal is present. the wakeb is an output logic signal which goes active low when the ic detects a constant rf carrier. the wake-up function is unavailable when the ic is in shutdown mode. www.datasheet.net/ datasheet pdf - http://www..co.kr/
-17- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? to activate the wake-up function, a received constant rf carrier must be present for 128 counts or the internal system clock. the internal system clock is derived from the reference oscillator and is 1/256 the reference oscillator frequency. for example: where: f t = 6.4mhz f s = f t /256 = 25khz p s = 1/f s = 0.04ms 128 counts x 0.04ms = 5.12ms f t = reference oscillator frequency f s = system clock frequency p s = system clock period the wake-up counter will reset immediately after a detected rf carrier drops. the duration of the wake-up signal output is then determined by the required wake up time plus an additional rf carrier on time interval to create a wake up pulse output. wakeb output pulse time = t wa k e + additional rf carrier on time for designers who wish to use the wakeup function while squelching the output, a positive squelching offset voltage must be used. this simply requires that the squelch resistor be connected to a voltage more positive than the quiescent voltage on the cth pin so that the data output is low in absence of a transmission. www.datasheet.net/ datasheet pdf - http://www..co.kr/
-18- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 15. package information 15.1 16-pin sop package 16-pin sop (m) 15.2 8-pin sop package 8-pin sop (m) www.datasheet.net/ datasheet pdf - http://www..co.kr/
-19- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? 15.3 16-pin sop top marking figure 15.3 RF83 sop top marking table 15.3 top marking explanation ? line characters description hoperf? s logo. line 1 part number code there is format RF83. 11=year 12=work week assigned by the assembly house. corresponds to the year and work weak of the assembly date. a=version number version number, such as ?a?. line 2 xx=trace code manufacturing code characters from the markings section of the assembly order form. 15.4 8-pin sop top marking figure 15.4 RF83(a/b/c/d) sop top marking table 15.4 top marking explanation line characters description hoperf? s logo. line 1 part number code there are four formats RF83a, RF83b, RF83c,or RF83d. 11=year 12=work week assigned by the assembly house. corresponds to the year and work weak of the assembly date. a=version number version number, such as ?a?. line 2 xx=trace code manufacturing code characters from the markings section of the assembly order form. www.datasheet.net/ datasheet pdf - http://www..co.kr/
-20- RF83 300~440mhz ask receiver v1.1 ? tel: ? +86 \ 755 \ 82973805 ?? fax: ? +86 \ 755 \ 82973550 ?? e \ mail: ? sales@hoperf.com ?? http://www.hoperf.com ? hope microelectronics co.,ltd add:4/f, block b3, east industrial area, huaqiaocheng, shenzhen, guangdong, china tel: 86-755-82973805 fax: 86-755-82973550 email: sales@hoperf.com t rade@hoperf.com website: http://www.hoperf.com http://www.hoperf.cn http://hoperf.en.alibaba.com this document may contain preliminary inform ation and is subject to change by hope microelectronics without notice. hope mi croelectronics assumes no responsibility or liability for any use of the information cont ained herein. nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of hope microelectronics or third parties. the products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons. no warranties of any kind, including, but not limited to, the implied warranties of mechantability or fitness for a articular purpose, are offered in this document. ?2006, hope microelectronics co.,ltd. all rights reserved. www.datasheet.net/ datasheet pdf - http://www..co.kr/


▲Up To Search▲   

 
Price & Availability of RF83

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X